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Abstract
Coastal communities are vulnerable to multihazards, which are exacerbated by land subsidence. On the US east coast, the high density of 
population and assets amplifies the region's exposure to coastal hazards. We utilized measurements of vertical land motion rates 
obtained from analysis of radar datasets to evaluate the subsidence-hazard exposure to population, assets, and infrastructure 
systems/facilities along the US east coast. Here, we show that 2,000 to 74,000 km2 land area, 1.2 to 14 million people, 476,000 to 6.3 
million properties, and >50% of infrastructures in major cities such as New York, Baltimore, and Norfolk are exposed to subsidence 
rates between 1 and 2 mm per year. Additionally, our analysis indicates a notable trend: as subsidence rates increase, the extent of 
area exposed to these hazards correspondingly decreases. Our analysis has far-reaching implications for community and 
infrastructure resilience planning, emphasizing the need for a targeted approach in transitioning from reactive to proactive hazard 
mitigation strategies in the era of climate change.
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Significance Statement

By quantifying the exposure to subsidence hazards for coastal communities and infrastructure, this study finds that subsidence rates 
of 2 mm per year affects a maximum of 2.1 million people, 867,000 properties (median exposure), and significant infrastructure on the 
East Coast of the United States. This hazard is a major threat to metropolitan cities such as New York, Baltimore, and Norfolk, whose 
populations and properties intersect directly with the rising seas. Our study provides important quantitative data for coastal disaster 
resilience planning.
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Introduction
Coastal regions, where most megacities are located, are on the 

front lines of climate change impacts and associated uncertain

ties (1–4). The coincidence of population migration toward low- 

elevation coastal areas and continued accelerating sea-level rise 

(SLR) will increase the future vulnerability of coastal communities 

worldwide (5–7). The impact of SLR-amplified hazards on coastal 

communities, such as flooding and erosion, dominates in global 

climate change discussions (1, 6, 8), with other coastal hazards, 

such as land subsidence (the lowering of land elevation) relegated 

to the background. Land subsidence, however, is a pernicious and 

growing problem on a global scale with more immediate hazards 

to coastal areas and often presents more pressing and localized 

challenges (9–15). In many nations, land subsidence barely regis

ters as an issue of public policy (11). In nations, where the adverse 

effects of subsidence are recognized, the slow, gradual, and 

unapparent land sinking motion explains the lack of urgent policy 
interventions and subsidence governance (11, 15). The resulting 
delayed response increases the exposure of coastal residents, es
pecially in light of the yearly elevation gain in sea levels due to cli
mate change and elevation loss due to subsidence. Recent 
considerations of the combined effect of SLR and subsidence indi
cate that subsidence increases the threat to coastal communities 
from SLR and may even triple estimates of potential flooding areas 
over the next few decades (3, 16, 17).

On the East Coast of the United States, the high density of popu
lation and infrastructure networks (Fig. 1A, B), coupled with SLR 
(Fig. 1C) and land subsidence hazard, increases the exposure of 
the population, properties, and assets in the region (13, 18). The 
functionality, mobility, social comfort, and economic growth 
and development of society depend on civil infrastructure net
works (19). Aging stock, extreme weather events, and differential 
land subsidence negatively impact infrastructure networks' 
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safety (19). The 2021 American Society of Civil Engineers (ASCE) 
report card for airports, schools, roads, bridges, dams, and levees 
in the United States found that these infrastructures were in “me
diocre” or “poor” condition, with only railways in “good” condition 
(20). A similar infrastructure assessment in 14 coastal states on 
the US east coast (Florida [FL] to Maine) indicates an overall 
“poor” condition. The ASCE report estimates that US$786 billion, 
US$125 billion, and US$45.2 billion are needed for the backlog of 
roads, bridges, and railways maintenance. This complacency to
ward maintenance in a high-hazard-prone coastal area increases 
the susceptibility of infrastructure to failure.

Infrastructure failure has major environmental repercussions 
and can result in significant fatalities. For example, in August 
2005, Hurricane Katrina caused the breaching of the New 
Orleans levee system, resulting in widespread flooding, extensive 
damage to the city, and the loss of over 1,500 lives (22, 23). The 
2013 collapse of the eight-story Rana Plaza Savar, Dhaka, 
Bangladesh, resulted in >1,100 deaths (24). On 2018 August 14, 
the Morandi bridge in Genoa, Italy collapsed over the Polcevera 
river, causing 43 deaths (25). The July 2021 12-story building 
collapse in Miami, FL, claimed the lives of 98 people (26). These 
high-consequence events in coastal areas are unfortunate re
minders of the overwhelming and devastating consequences of 

infrastructure failure. Settlement (or subsidence) in an area af
fects the integrity of existing structures and increases the likeli
hood of failure (27–30). For some structures, unless foundations 
reach the bedrock, they are more susceptible to settlement and 
subsidence hazards, which can lead to eventual failure if not 
properly managed (31). Thus, frequently monitoring the condi
tions of infrastructure and associated hazards is essential for re
silience assessment by individual asset owners, engineers, and 
policymakers (32).

The exploitation of deformation signals from interferometric 
synthetic aperture radar (InSAR) has proved effective in assessing 
at-risk populations (9, 33) and monitoring infrastructure resili
ence, e.g. roads, railways, bridges, airports, dams, and levees (19, 
25, 34–38). Here, we investigate the exposure of communities, as
sets, and 14 infrastructure systems/facilities (roads, railways, 
dams, levees, train stations, airports/airfields, universities, 
schools, hospitals, nursing homes, fire departments, post offices, 
libraries, and police stations) to subsidence hazards within 
100 km inland of the US east coast. In this study, we define expos
ure to subsidence in terms of the area, population, properties, and 
infrastructure interacting directly with the sinking land on the US 
east coast, for varying magnitudes of subsidence rate (see 
Materials and methods). The subsidence exposure analysis is 

Fig. 1. Population, infrastructure and SLR on the US east coast. A) Population distribution in major cities on the US east coast. The population data are the 
2020 population estimate from the US census bureau (https://www.census.gov/geographies/mapping-files/time-series/geo/tiger-data.2010.html). The 
rectangle indicates extent of the close-up area shown in (B). B) Close-up view of New England showing Infrastructure systems/facilities on the US east 
coast. The summary table beneath (B) represents statistics for all infrastructure facilities analyzed in this study. Background Images in (A) and (B) are 
from Google, Earthstar. C) Time series of monthly (dashed line) and annual (solid line) mean sea level for tide gauge stations shown as inverted triangles 
in (A) (21). The time series have been offset for visual clarity.
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critical for coastal hazard (e.g. flooding) mitigation and infrastruc
ture resilience development on the US east coast and for linking 
subsidence to the socioeconomic consequences of relative SLR.

Results
Land subsidence along the US east coast
To characterize the land deformation along the US east coast, we 
leverage the ∼50 m resolution vertical land motion (VLM) datasets 
from 2007 to 2020 published by the United States Geological 
Survey (USGS) (39, 40) and Ohenhen et al. (41) (Fig. S1A). The data
set was produced by combining thousands of images comprising 
96 SAR frames from two satellites (Sentinel-1 A/B and ALOS-1) 
with measurements from 162 global navigation satellite system 
(GNSS) stations (Fig. S2). Using a χ2 goodness of fit test, we per
formed a statistical hypothesis testing to account for the impact 
of measurement errors or model deficiencies on the quality of 
the estimated VLM rates (Fig. S1B; see Materials and methods). 
The hypothesis testing applied to the dataset ensured the robust
ness of our subsequent exposure analysis.

Figure 2A shows the updated VLM from this study, with nega
tive values indicative of land subsidence and positive values indi
cating uplift. Hereafter, we quote VLM values with the respected 
signs, while we only report the absolute values for subsidence 
(i.e. negative VLM). Given the standard deviations, 78 to 99% of 
the obtained InSAR pixels show subsidence with a median rate 
of 1.3 ± 0.5 mm per year (Figs. S3 and S4). The maximum subsid
ence rate across the US east coast exceeds 10 mm per year 
(Fig. S3) and varies with rates up to 13 mm per year (Fig. S3). We 
highlight 12 metropolitan cities affected by spatially variable 
land subsidence (Fig. 2E): Boston (Massachusetts [MA]), 
Providence (Rhode Island [RI]), New Haven (Connecticut [CT]), 
New York (New York [NY]), Atlantic City (New Jersey [NJ]), 
Baltimore (Maryland [MD]), Norfolk (Virginia [VA]), Wilmington 
(North Carolina [NC]), Charleston (South Carolina [SC]), 
Jacksonville (FL), and Miami (FL). Note the different ranges of rates 
of each city illustrated by the box plots and corresponding out
liers. We observe subsidence in most cities, with rates exceeding 
1 mm per year in some areas. Notably, several areas in Atlantic 
City, Savannah, and Charleston are subsiding with rates faster 
than 4 mm per year (Fig. 2E).

To analyze the factors contributing to VLM along the US east 
coast, we employed the glacial isostatic adjustment (GIA) 
ICE-6G-D model (42) to estimate the GIA contributions at the 
InSAR pixels and excluded its effect from the observed VLM 
(Fig. S5A). In the absence of the long wavelength GIA signals, the 
corresponding VLM map is dominated by non-GIA signals, includ
ing the contribution of anthropogenic influences (e.g. ground
water extraction and sediment compaction). The VLM from the 
GIA model displays a persistent subsidence signal along the US 
east coast, with particularly high subsidence rates of ∼3 mm per 
year observed in NJ and Delaware (DE) (Fig. S5B). Without the 
GIA effects, the subsidence signal in the VLM map decreases by 
55% (Fig. 2C), suggesting that GIA effects predominate and control 
the observed broad-scale subsidence along the US east coast. The 
median non-GIA VLM rates show an apparent shift toward uplift 
(VLM > 0 mm per year) in half of the 12 highlighted major cities. 
However, cities such as Boston, Atlantic City, Charleston, and 
Savannah show non-GIA subsidence rates of 1 mm per year in 
some areas (Fig. 2E).

Differential subsidence along the US east coast
Differential subsidence, the uneven sinking of the land, poses a 
significant hazard to urban infrastructure, including buildings, 

roads, and other infrastructure facilities. The hazard associated 
with differential subsidence is due to angular distortion (β) caused 
by strain changes between two adjacent points, which is com
monly employed in geotechnical engineering to assess the sever
ity of damage caused by subsidence/differential settlement (e.g. 
refs. 29, 30, 43, 44). We employed the angular distortion (β) to as
sess the hazard of differential subsidence for the US east coast 
(Eq. 7; see Materials and methods). Following Cigna and Tapete 
(29), we classified the hazard into four categories based on the 
angular distortion (β) values: low (β < 1/3,000), medium 
(1/3,000 ≤ β < 1/1,500), high (1/1,500 ≤ β ≤ 1/500), and very high 
(β > 1/500), indicative of increasing hazard severity.

The angular distortion map (Fig. 2B) shows that >99.5% of the 
area (95,000 km2) are classified as low-hazard zones for the time 
scale of InSAR period (2007–2020). We find no area with 
β > 1/500 (very high-hazard zones), which is the recommended 
threshold for severe damage to urban infrastructure (27, 43). 
However, the presence of medium and high β zones in a combined 
area of 290 km2, predominantly around the Chesapeake Bay area, 
where high subsidence and uplift signals are noted. These me
dium and high-hazard areas suggest uneven settlement in these 
regions and should be the focus of frequent monitoring, particu
larly in urban areas. Analysis of the differential subsidence for 
urban areas on the US east coast show that β is low for the 12 high
lighted major cities, with only Boston having a medium β value in 
0.05 km2 area (Table S1).

County-specific subsidence exposure analysis
To determine the area affected by subsidence on a by-county ba
sis, we calculated the percent area in each county affected by sub
sidence using Eq. (8) and evaluated the area exposure for different 
subsidence hazard severity (see Materials and methods). This as
sessment incorporates the standard deviation values from the 
VLM, providing specific lower, median, and upper bounds for the 
subsidence exposure analysis in each county (see Materials and 
methods). Figures 3 (median), S6 (lower bound), and S7 (upper 
bound) show the percent area exposed to subsidence hazards in 
coastal counties (172 counties overlapping with SAR pixels) on 
the US east coast, while Table 1 details the total land area, popu
lation, and property exposure. We only estimate population and 
property exposure for counties with high area exposure (>60%).

Our analysis shows that out of the 172 counties analyzed on the 
US east coast, 154 to 163 counties are exposed to subsidence rates 
>0 mm per year, 138 to 163 counties to rates >1 mm per year, and 
56 to 152 counties to rates >2 mm per year (considering the lower 
to upper bounds) (Figs. 3, S6, and S7A–C). However, only 6 to 32 
counties have a high percent area (>60%) exposed to land subsid
ence for the different subsidence hazard severity (subsidence 
rates >0 mm per year to >2 mm per year). These counties include 
some major metropolitan areas on the US east coast, including 
Hampton (VA), Norfolk (VA), Virginia Beach (VA), Chesapeake 
(VA), Baltimore City, (MD), Union (NJ), Middlesex (NJ), Monmouth 
(NJ), Ocean (NJ), New Haven (CT), and several counties in 
New York City (Queens, Bronx, Nassau, and Westchester; Figs. 
3A–C and S6–S8). These communities with a high percent area ex
posed to subsidence also have high estimated population and prop
erty exposure, with 242,000 people and 95,000 properties for 
Norfolk (VA), 451,000 people and 177,000 properties for Virginia 
Beach (VA), 826,000 people and 335,000 properties for Baltimore 
city (MD), 822,000 people and 294,000 properties for Middlesex 
(NJ), and ∼5 million people and ∼1.8 million properties for 
Queens, Bronx, and Nassau (NY) (Table S2). We estimate that a total 
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land area between 2,200 and 81,000 km2, a population between 1.2 
and 16 million people, and 476,000 and 6.3 million properties on the 
US east coast's coastal communities are exposed to subsidence 
rates of 0 to 2 mm per year (Table 1). However, as the severity of 
subsidence hazard increases, the extent of exposure decreases. 
For exceptionally high subsidence rates >3 mm per year, we find 
a total exposed land area between 74 and 14,400 km2. However, 
only one county—Sussex, DE (upper bound)—exhibits a high per
centage of area exposure (>60%; Table 1 and Fig. S7D).

Infrastructure subsidence exposure analysis
Detecting and monitoring critical infrastructure affected by fast 
subsidence rates are essential in ensuring their structural integ
rity, maintaining their longevity, and monitoring site-specific 
structures vulnerable to land subsidence and related hazards 
(28, 32). On the US east coast, we analyzed the exposure to subsid
ence for 14 infrastructure systems, including transport networks 
(roads and railways), flood-control systems (levees and dams), 
health facilities (hospitals and nursing homes), and other critical 
infrastructure (airports, schools, universities, train stations, fire 

departments, police stations, post offices, and libraries; see 
Materials and methods). Our analysis of subsidence exposure 
for infrastructure is dependent on the infrastructure feature 
type, i.e. linear (e.g. roads), point (e.g. dams), or polygon (e.g. hos
pitals; see Materials and methods).

Subsidence exposure analysis of infrastructure assets for 14 
states along the US east coast is shown in Figs. 4, 5, and S9–S11. 
Figures 4A and S9 show the distribution of vertical deformation 
velocities over the primary and secondary roads. The exposure 
analysis shows that between 77 and 99% (5,300 to 6,900 km out 
of 6,942 km) of interstate highways and 76 and 99% (50,000 to 
65,000 km out of 66,000 km) of primary and secondary roads are 
exposed to subsidence (VLM < 0 mm per year) on the US east 
coast. High subsidence rates (>3 mm per year) are observed on 
2.3 to 444 km of interstate highways and 490 to 8,500 km of pri
mary and secondary roads on the US east coast, observed particu
larly along the coastal fringes of Georgia (GA), SC, NC, DE, and the 
Delmarva Peninsula (Figs. 4A and S9). Figure 4B highlights a critic
al section of roads in Hampton and Norfolk (VA), where subsid
ence rates along the roads exceed 2 mm per year. Roads in the 
Hampton area have documented increased flooding of transport 

Fig. 2. Vertical land motion (VLM) along the US east coast. A) Updated VLM rate for the US east coast from this study. This map includes ∼25 million pixels 
at ∼50 m resolution. B) Spatial distribution of angular distortion (β) map. Background Images in (A) and (B) are from Google, Earthstar. C) Empirical 
cumulative distribution function for VLM and VLM without GIA. The GIA data from the ICE-6G-D model (42). D) Empirical cumulative distribution 
function for β. The area for each β category is estimated using a regular grid of 50 m. E) Distribution of land subsidence for 12 metropolitan cities on the US 
east coast: Boston (MA), Providence (RI), New Haven (CT), New York (NY), Atlantic City (NJ), Baltimore (MD), Norfolk (VA), Wilmington (NC), Charleston 
(SC), Savannah (GA), Jacksonville (FL), and Miami (FL). The locations of the cities are highlighted in (A).
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infrastructure due to progressive subsidence and SLR in the region 
(45–47).

The railway network density on the US east coast is among the 
highest in the country, particularly in New England, which in
cludes six Northeastern states: CT, Maine, MA, New Hampshire 
(NH), RI, and Vermont. The exposure analysis for railway systems 
and train stations is shown in Figs. 4C and S10. The exposure ana
lysis shows sinking on 81 to 99% of the railway systems (7,452 to 
9,221 km out of 9,247 km) and 42% (11 out of 26) of train stations 

(Fig. S11B), with subsidence rates of >3 mm per year observed 
along 41 to 846 km stretch of railways on the US east coast. The 
high density of underground railways (subways) in New York 
City increases the risk associated with the observed subsidence 
hazard in this region (Fig. 4D).

Figures 5 and S11 show the subsidence exposure analysis for an 
ensemble of infrastructure facilities (schools, universities, hospi
tals, airports, dams, levees, libraries, post offices, fire depart
ments, police stations, and nursing homes) on the US east coast. 

Fig. 3. Subsidence area exposure for counties on the US east coast. A) Percentage of county’s land area affected by VLM < 0 mm per year. B) Percentage of 
county’s land area affected by VLM < −1 mm per year. C) Percentage of county’s land area affected by VLM < −2 mm per year. D) Percentage of county’s 
land area affected by VLM < −3 mm per year. E) Percentage of county’s land area affected by VLM < −4 mm per year. F) Percentage of county’s land area 
affected by VLM < −5 mm per year. Note that this figure considers the median bound (VLM only), see Figs. S6 and S7 for the lower and upper bounds (VLM  
± standard deviation). The shape outline in (A–F) defines the extent of each county. Important counties are numbered in (A) to (F). Table 1 summarizes the 
number of counties, total land area in km2, population, and properties exposed to subsidence. A summary table of all counties and land area exposure is 
provided in Tables S3–S5.
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In Figs. 5(A–F) and S11, the warming of the colors from blue to red 
denotes an increased subsidence hazard severity. Subsidence 
exposure analysis shows that >70% of infrastructure in each 
category is sinking. However, we find that <10% of the infrastruc
ture facilities on the US east coast are exposed to subsidence 
>3 mm per year. Subsidence hazards can be a major concern for 
specific high-risk infrastructures, such as dams, levees, or 
airports.

Table 2 summarizes the statistics for subsidence exposure for 
10 levees protecting some of the most valuable properties on the 
US east coast. Median subsidence rates >1 mm per year affect 
all the levee systems, with a total estimated at-risk population 
of ∼46,000, ∼27,000 buildings, and properties valued at US$12 bil
lion. Note that this population and property exposure are only the 
base value estimated from the 10 highlighted levees (Table 2). The 
actual population and property exposure from the 116 levees ex
posed to subsidence (Fig. 5F) may be two to three times greater.

Major airports on the US east coast exposed to subsidence are 
John F. Kennedy International Airport (JFK), with a median 
subsidence rate of 1.7 mm per year, LaGuardia Airport with a me
dian subsidence rate of 1.5 mm per year, Newark Liberty 
International Airport (EWR) with a median subsidence rate of 
1.4 mm per year, and Boston Logan International Airport with a 
median subsidence rate of 1.1 mm per year. To emphasize the po
tentially damaging effect of subsidence on airports and levees, we 
highlight the subsidence on JFK airport and the Atlantic coast 
Maryland shoreline levee (Fig. 5G–I). JFK airport, which serves 
>60 million annual passengers, shows a subsidence rate >2 mm 
per year in several areas of the airport and average and maximum 

subsidence rates of 0.8 and 2.8 mm per year, respectively, on the 
runway (Fig. 5G and H). The Atlantic coast Maryland shoreline lev
ee protects some of the most valuable assets (US$3.2 billion) on 
the US east coast and also has the greatest subsidence exposure 
for levees, with a maximum subsidence rate of 5.06 mm per 
year and a median subsidence rate of 4.27 mm per year (Fig. 5I 
and Table 2).

Infrastructure differential subsidence hazard 
analysis
Analysis of the differential subsidence hazard for infrastructure 
on the US east coast revealed that most infrastructure systems 
are in low (β < 1/3,000) hazard areas. Specifically, all railroads, 
interstate roads, levees, nursing facilities, train stations, fire de
partments, post offices, libraries, and police stations are located 
in areas with low values (Fig. S12). In the Delmarva peninsula, 
however, 14 km stretch of primary and secondary road with me
dium (1/3,000 ≤ β < 1/1,500) hazard levels were identified. 
Furthermore, infrastructure facilities with β values exceeding 
1/3,000 (i.e. medium-to-high -hazard zones) include 12 school 
buildings, 4 university buildings, 1 hospital, 51 airports/airfields, 
and 117 dams (Fig. S12A–E). These structures are potential facil
ities for careful monitoring and management to assess potential 
structural damage due to subsidence gradients. Note that since 
the angular distortion (β) relies on variations between neighboring 
pixels, we are limited to the smallest detectable scale of ∼50 m 
(see Materials and methods). Assessing localized tilts and struc
tural damage on specific infrastructure would require a finer spa
tial resolution (29).

Table 1. Subsidence exposure for counties, population, and properties on the US east coast.

VLM (mm per year) Area exposure (%) Number of counties Total land area  
(×103 km2)

Population exposure (million) Property exposure (million)

<0 >0–20 47, 39, 34 5.6, 4.8, 4.6 NA NA
20–40 50, 47, 44 21.2, 17.1, 21.1 NA NA
40–60 32, 46, 53 17.4, 24.7, 33.1 NA NA
60–80 24, 30, 31 14.6, 20.3, 22.0 13.0, 14.4, 15.1 5.1, 5.8, 6.0
>80 1 0.6 1.4 0.5

<−1 >0–20 70, 51, 40 7.7, 4.6, 5.0 NA NA
20–40 35, 41, 43 9.6, 13.9, 19.3 NA NA
40–60 15, 39, 49 5.6, 20.7, 28.6 NA NA
60–80 18, 23, 30 7.1, 12.5, 20.7 11.8, 12.1, 14.4 4.1, 4.7, 5.8
>80 0, 1, 1 0.0, 0.6, 0.6 0, 1.4, 1.4 0, 0.5, 0.5

<−2 >0–20 53, 59, 80 1.5, 3.6, 6.5 NA NA
20–40 3, 20, 33 0.6, 5.3, 11.8 NA NA
40–60 0, 10, 30 0.0, 4.4, 15.5 NA NA
60–80 0, 6, 9 0.0, 2.0, 5.6 0, 1.2, 2.4 0, 0.5, 1.2
>80 0 0.0 0 0

<−3 >0–20 13, 43, 64 0.3, 1.7, 4.0 NA NA
20–40 1, 5, 12 0.2, 1.8, 4.1 NA NA
40–60 0, 0, 9 0.0, 0.0, 4.8 NA NA
60–80 0, 0, 1 0.0, 0.0, 1.5 0, 0, 0.2 0, 0, 0.1
>80 0 0 0 0

<−4 >0–20 8, 28, 52 0.2, 1.1, 3.3 NA NA
20–40 1, 1, 5 0.1, 0.2, 1.8 NA NA
40–60 0, 0, 2 0.0, 0.0, 1.9 NA NA
60–80 0 0.0 0 0
>80 0 0.0 0 0

<−5 >0–20 7, 13, 38 0.1, 0.4, 1.3 NA NA
20–40 0, 1, 4 0.0, 0.2, 1.2 NA NA
40–60 0, 0, 1 0.0, 0.0, 1.2 NA NA
60–80 0 0.0 0 0
>80 0 0.0 0 0

Lower, median, and upper bound for the area exposure (in thousand km2), total population (in millions), and properties (in millions) on the US east coast. The rows 
without bounds are where the lower, median, and upper bounds have the same exposure. The population and property exposure are only estimated for counties 
with an area exposure >60%. NA (not applicable) is assigned as the population and property exposure for counties with an area exposure of 60% or less. The area 
exposure, total population, and properties for each county are summarized in Tables S2–S5.
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Discussion
This study assesses the impact of subsidence on communities on 

the US east coast. We comprehensively analyzed subsidence ex

posure on coastal infrastructure systems and county-specific 

population and property exposure on the US east coast. The 

VLM rate map highlights substantial subsidence (VLM < 0 mm 

per year) and exposure along the US east coast, affecting 89 to 

95% of the counties (154 to 163 out of 172) analyzed in this study 

and a total land area between 59,000 and 81,000 km2 (Table 1). 

However, only 7 to 43 counties and a total land area between 74 

and 3,700 km2 on the US east coast are exposed to high subsidence 

rates (VLM < −5 mm per year) (Table 1). This substantial decrease 

in the exposed areas is important and suggests that, while sinking 
land is widespread on the US east coast, the severity of exposure to 
land subsidence may not necessarily be pervasive. This raises the 
question: what annual subsidence rate threshold should be cause 
for concern to policymakers and citizens? Currently, there is no 
universally accepted threshold for the subsidence rate to define 
associated hazard severity and answers to this question would re
quire a concerted effort from the global subsidence research com
munity (e.g. the International Panel on Land Subsidence) (49). 
Exposure and the risk from land subsidence hazards depend on 
various factors, including the land subsidence duration and rate 
variations, present land elevation, type, use, tolerance levels of in
frastructure, population/property density, and occurrence of 

Fig. 4. Subsidence exposure for roads and railways on the US east coast. A) Median exposure to subsidence for primary/secondary roads. Exposure 
analysis for primary and secondary roads is summarized in (A). The lower and upper bounds for the primary and secondary roads exposure analysis are 
shown in Fig. S9. White rectangle indicates the extent of (B). B) Primary and secondary roads affected by subsidence in Hampton and Norfolk (VA). 
C) Median exposure to subsidence for railways and train stations. Exposure analysis for railways is summarized in (C). The lower and upper bounds 
for the railways exposure analysis are shown in Fig. S10. Black rectangle indicates the extent of (D). D) Railways are affected by subsidence in New York 
City (NY). The circles in (C and D) are the locations of train stations. Background Images in (A) and (C) are from Google, Earthstar. Background Images in (B) 
and (D) are from ESRI, HERE. 
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compounding hazards. Generally, a subsidence rate of more than 
a few millimeters per year could cause concern, particularly in 
densely populated areas or areas with essential facilities like hos
pitals, schools, or transportation hubs.

However, it is important to note that exposure to subsidence 
does not necessarily imply structural damage. Differential subsid
ence, which results from the uneven settlement of the land, 

presents a greater hazard to infrastructure. It is less likely that in
frastructure will be damaged if the rate of land subsidence is uni
form across an area (43). On the other hand, the risk of structural 
damage increases as the subsidence gradient increases (29, 43). 
Our analysis shows that on the US east coast, land is sinking even
ly, with differential subsidence classified as low (β < 1/3,000) for 
>99.5% of the land area analyzed in this study. However, note 

Fig. 5. Subsidence exposure for infrastructure facilities on the US east coast. Histogram showing average weighted subsidence exposure for A) schools, 
B) universities, C) hospitals, D) Airports, E) dams, and F) levees. The number of infrastructure facility within each colored histogram is shown in the 
histograms. Not exposed to subsidence means VLM > 0 mm per year. N is the number of infrastructure facilities. G) Areas affected by subsidence in John 
F. Kennedy International airport. H) Time series of vertical land motion (VLM) around the runway highlighted as the dotted black rectangle in (G). 
I) Subsidence across the Atlantic coast Maryland shoreline levee system. The black polygons are building footprints. The property value of buildings 
behind the levee is US$3.2 billion. Background Images in (I) is from ESRI, HERE. 
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that the calculated β reflects a partial distortion that occurred 
over the 13-year InSAR coverage period, not the total distortion. 
Unmitigated, such subsidence may slowly but surely compromise 
the structural integrity of urban infrastructure (29) and exacer
bates other hazards (e.g. flooding), contributing to socioeconomic 
losses (3, 50).

The percent land area within each county affected by subsid
ence on the US east coast has important implications for flood 
frequency and severity in the different communities. Land sub
sidence can potentially increase the flooded area during coastal 
storm events by modifying the base flood elevations and topo
graphic gradients (50). Major metropolitan communities with a 
high percentage area (>60%) exposed to subsidence rates 
>1 mm per year, such as Hampton (VA), Portsmouth (VA), 
Norfolk (VA), Baltimore City (MD), Newark (NJ), and New York 
City (NY) (Fig. 3B) are affected yearly by persistent nuisance flood
ing events (17, 45, 47, 51–55) (Fig. S13 and Table S2) and nuisance 
flooding will increase dramatically (∼3- to 12-fold) by 2050 (7). 
Such flooding disrupts economic activities, resulting in fiscal 
losses worth billions of dollars from damaged properties, flood in
surance payout, and the loss of lives. In these communities, the 
presence of infrastructure may exacerbate the loss associated 
with land subsidence-related hazards.

Infrastructure damage due to subsidence has direct, indirect, 
short-term, and long-term consequences, such as disruptions of 
clean water supplies, transportation, education, and health 
care, economic stagnation, and a severe death toll (47). The haz
ards associated with the subsidence exposure observed in our 
analysis are heightened by the potential consequences. For in
stance, New York City's railway systems show subsidence 
>1.5 mm per year (Fig. 4D). Since railways in New York City are 
predominantly underground, potential inundation from relative 
SLR due to subsidence may cause the irreversible loss of this infra
structure in the future. The US east coast is densely fortified 
with flood-control dams and levees. An assessment of available 

meta-data for the dams analyzed in this study shows that 1,756 
out of 2,570 (68% of dams) are classified as high/significant hazard 
potential to downstream areas (Fig. S14). This hazard potential is a 
measure of the probable loss of life and the economic and environ
mental consequences of infrastructure failure. Likewise, an as
sessment of 10 levees across 8 states, which protects some of 
the most valuable properties on the US east coast, shows max
imum subsidence rates on the levees between 1.14 and 5.06 mm 
per year (Table 2). Continuous subsidence combined with acceler
ating SLR indicates a future of continuous maintenance and en
hancements for levees, seawalls, and dams to offset elevation 
loss and retain their structural integrity and utility (16).

In absolute terms, subsidence is a major threat worldwide and 
rapid urbanization of coastal zones leads to increased exposure of 
coastal communities and infrastructure (10, 14, 15, 33). Beyond 
the direct impacts, subsidence in coastal zones is a major driver 
of current and future hazards, amplifying the impacts of climate 
change-driven global SLR (3, 16, 17, 56). Consequently, under
standing the impact of continuous subsidence in coastal zones 
is essential in transitioning from reactive to proactive climate 
change mitigation strategies. For a proactive approach to be ef
fective, critical indicators of change, such as subsidence, must 
be monitored regularly (57). This monitoring and management 
are crucial to avoiding a colossal future “climate change tax.” 
The cost of an ineffective climate policy is reflected in the eco
nomic consequences of climate tipping points. The concept of tip
ping points in a changing climate is relevant in addressing the 
critical threshold at which a tiny perturbation can alter the state 
of a system (58). The potential economic implications of such tip
ping points are significant, with economic losses in trillions of dol
lars (59, 60). So far, these tipping elements in earth systems are 
only examined within the context of climate systems (58, 61) 
and ecosystems (62–66), with no considerations for the lithospher
ic component. We introduce coastal land elevation as the litho
spheric component of tipping elements in the earth systems. 

Table 2. Subsidence exposure for selected levees on the US east coast.

Name Year of 
construction

Population 
exposure

Building 
exposure

Property 
value (US$ 

million)

Maximum 
subsidence rate 

(mm/year)

Median 
subsidence rate 

(mm/year)

Maximum 
angular distortion 

category

S-97 North Tie Back, 
FL

1964 2,248 1,253 272 1.14 1.02 Low

Alligator River Levee 
Ring, NC

NA 239 154 64.3 2.05 1.56 Low

Norfolk, Virginia 
Central, VA

1971 4,502 219 652 2.20 2.02 Low

Virginia Beach, VA 2000 1,991 254 241 2.46 2.43 Low
Atlantic Coast 

Maryland 
Shoreline, MD

1992 5,187 1,475 3,200 5.06 4.27 Low

Rahway, Rahway 
River South Branch 
RB, NJ

1966 1,447 430 459 1.61 1.60 Low

Raritan Bay and 
Sandy Hook Bay, 
Keansburg, NJ

1978 17,023 6,099 3,330 1.86 1.85 Low

Oakwood Creek West 
Bank, NY

2000 292 102 39.3 1.76 1.76 Low

Stamford HSPP, CT 1969 8,381 1,300 1,140 1.31 1.30 Low
New Bedford HSPP, 

MA
1966 4,624 16,359 2,690 1.54 1.47 Low

NA indicates not applicable. The data are not available from the national levee database provided by the USACE. The categories for the angular distortion (β) values 
include low (β < 1/3,000), medium (1/3,000 ≤ β < 1/1,500), high (1/1,500 ≤ β ≤ 1/500), and very high (β > 1/500). Note that the national levee database only includes a 
small percentage of existing levee systems (48).
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Considerations for the loss of coastal elevation are crucial in ac
counting for future economic losses. Even if current climate 
measures successfully curb rising sea levels, continuous land sub
sidence may result in irreversible inundation and more frequent 
flooding in some coastal regions (17). Such coastal land elevation 
loss with current sea levels is sufficient to trigger annual rates of 
exceedances over elevation thresholds from mean higher high 
water (67), resulting in increased frequency of flooding and higher 
nuisance flood levels, overwhelming local and federal resources, 
devastating communities, and increasing climate economic losses 
in coastal cities. Within the context of sustainable subsidence gov
ernance, disentangling total subsidence from anthropogenic sub
sidence is critical to proactive decision-making. If subsidence is 
solely the result of nonanthropogenic processes (e.g. GIA), then 
subsidence mitigation policies would be largely ineffectual. The ob
served subsidence on the US east coast is attributable to ongoing 
GIA and non-GIA processes (18). Thus, subsidence governance is 
a crucial sustainable mitigation strategy for minimizing the expos
ure of coastal communities on the US east coast.

Our analysis demonstrates the potential role of remotely 
sensed observations in asset management. Unlike traditional field 
surveys and on-site instrumentation techniques, monitoring in
frastructure network systems through remote sensing technology 
offers a superior advantage in large-scale, high-resolution, and in
creased frequency monitoring. This dataset and other high- 
resolution remotely sensed datasets (e.g. the soon-to-launch 
NISAR satellite) can augment current visual inspection standards 
for planning, operations, maintenance, and development of 
infrastructure programs. In addition, the use of remote sensing 
is critical for deficiency identification, damage preventative risk 
assessment, and post-hazard response because it provides 
up-to-date infrastructure information to monitor the state of con
structed infrastructure. Recently, a significant infrastructure bill 
was signed into law in the United States, which includes invest
ment to fund the repairs of roads and bridges and support other 
major transformational projects. Our results and similar spatio
temporal remotely sensed observations can provide quantitative 
data to guide the disbursement of the investment.

Materials and methods
VLM data
To create a map of VLM rates whose uncertainties are verified and 
qualities are assessed, we leverage the ∼50 m resolution VLM da
tasets from 2007 to 2020 published by the USGS (39, 40) and 
Ohenhen et al. (41) (Fig. S1A). The VLM datasets were produced us
ing an interferometric dataset comprising 3,057 SAR images from 
ascending tracks of the Sentinel-1 A/B and ALOS-1 satellites, in 
combination with observations of 3D displacement fields at 162 
GNSS stations (Fig. S2). To produce the spatially continuous VLM 
maps across the region, two large-scale maps of line-of-sight 
(LOS) velocity for Sentinel-1 A/B and ALOS-1 satellites were first 
produced. The LOS displacements were generated for 17 
Sentinel-1 and 95 ALOS-1 frames using a multitemporal 
Wavelet-Based InSAR (WabInSAR) algorithm (68–71). To this 
end, the wavelet-based analysis applied to the ∼20,000 interfero
grams involved identifying and removing noisy pixels, reducing 
the effects of topographically correlated atmospheric phase delay, 
and spatially uncorrelated digital elevation model (DEM) error 
(68, 69). Next, the LOS velocity for each pixel was estimated as 
the slope of the best fitting line to the associated time series using 
a reweighted least-squares estimation. Lastly, the LOS velocity for 

each frame is mosaiced to generate large-scale continuous LOS 
displacements for Sentinel-1 and ALOS datasets following the 
procedure of Ohja et al. (72). Further details on the model input 
parameters, interferogram, and LOS velocity generation can be 
found in Ohenhen et al. (41).

To combine the LOS velocities with the GNSS 3D displacements 
and generate a map of the VLM rate and assess uncertainties, we 
adopted a variation of the stochastic model proposed by Ohenhen 
et al. (41):
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where C represents the unit vectors projecting the 3D displace
ments onto the LOS (73), EG, NG, and UG are the interpolated 
GNSS velocities, ya and ys are the interpolated LOS velocities and 

σ2
a and σ2

s are the variances for each pixel, where the subscripts a 
and s indicate ALOS-1 and Sentinel-1, respectively, and E, N, U 
are unknowns. Using matrix notations,
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The optimized value of unknown in terms of least-squares and as
sociated variance–covariance matrix (QXX) are given by

X = (ATPA)−1ATPL, (6) 

QXX =
rTPr
df

(ATPA)−1, (7) 

where A is Green’s function, L is the observations, and P is the weight 

matrix, which is inversely proportional to the observant variance 

(σ2), df is the degree of freedom, which is equal to the number of in

dependent equations minus the number of unknowns and 

r = L − AX. The weight matrix, P assigned to the interpolated GNSS 

observation, is a weight proportional to the nearest GNSS station (41).
Next, we perform a χ2 goodness of fit test to examine whether 

the unknown parameters are distributed normally, or their distri
bution is skewed due to outliers and systematic errors (74). This 
test accounts for the impact of observations error and model 
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inaccuracy on the quality of the estimated VLM rates used in the 
exposure analysis. To that end, we implemented a statistical hy
pothesis testing with a null hypothesis stating rTPr follows a χ2 dis
tribution (χ2) with df degree of freedom (75). Thus, the alternative 
hypothesis is defined as

rTPr > χ2
df . (8) 

We attempt to reject the null hypothesis at a significance level of 

α = 0.05, namely, we excluded pixels where rTPr is greater than the 
critical value (Fig. S1B). This exclusion criterion was applied to en
sure the robustness of our exposure analysis by removing data 
points that may be affected by measurement errors or model de
ficiencies. Generally, we note higher χ2 values in areas with noted 
higher standard deviations. This could be attributed to several 
factors: the nonlinearities in surface deformation rates observed 
between the ALOS-1 and Sentinel-1 periods, the sparse distribu
tion of GNSS stations, and the comparatively higher standard de
viation observed at these GNSS stations in these areas (76). The 
final VLM utilized in this study is shown in Fig. 2A. The distribution 
of the standard deviation shows that 79% of the pixels have values 
<1 mm per year, and >99% of the pixels have standard deviation 
values <3 mm per year (Fig. S4A, B). InSAR VLM validation was 
performed using 30 independent GNSS stations provided by the 
Nevada Geodetic Laboratory (77) (Fig. S2). The comparison against 
the GNSS vertical observation shows a mean and a standard devi
ation of −0.15 mm per year and 0.8 mm per year, respectively, for 
the difference between the two datasets (Fig. S4C).

SAR analysis of JFK airport
To measure the high-resolution surface deformation at JFK air
port, we analyzed 104 SAR images acquired during 2016 May 17 
to 2021 February 8 in Ascending orbit of the Sentinel-1A/B satel
lite. We applied a multilooking factor of 6 × 1 in range and azimuth 
directions, resulting in a ground resolution cell of ∼15 m. The rest 
of the analysis is similar to that described above for mapping 
large-scale VLM rates along the US east coast.

Differential subsidence data for the US east coast
We define hazard due to differential subsidence on the US east 
coast using angular distortion (β), which is a measure of differen
tial settlement between adjacent pixels (27, 78). Given l, the dis
tance between adjacent SAR pixels and Δδ as the differential 
settlement between l and β is defined as the ratio of Δδ to l:

β =
Δδ

l
, (9) 

where l is 50 m and Δδ is computed for the InSAR period, 2007– 
2020 (13 years). The obtained β values are dimensionless and ex
pressed in fractions. Following Cigna and Tapete (29), we define 
four categories indicative of the increasing hazard severity, 
viz: low (β < 1/3,000), medium (1/3,000 ≤ β < 1/1,500), high 
(1/1,500 ≤ β ≤ 1/500), and very high (β > 1/500). High β values 
identify areas of high subsidence gradients between adjacent 
points and indicate a higher likelihood of damage (29, 43, 44).

Population, properties, and infrastructure data
The population and properties dataset for the US east coast is 
based on the open-access TIGER/Line demographic and economic 
data record available from the US Census Bureau. For the popula
tion data, we extracted the 2021 population estimates available on 
a by-county basis for 172 counties and 14 states along the US east 
coast, including FL, GA, SC, NC, VA, MD, DE, Pennsylvania, NJ, NY, 

CT, RI, MA, and NH. A summary of the 172 selected counties is 
shown in Tables S2–S5. The properties dataset is from the 2020 
total housing units categorized by the census for each of the 172 
counties.

We analyzed the exposure to subsidence for 14 infrastructure 
systems on the US east coast, including transport networks (roads 
and railways), flood-control systems (levees and dams), health fa
cilities (hospitals and nursing homes), and other critical infra
structure (airports, schools, universities, train stations, fire 
departments, police stations, post offices, and libraries). The in
frastructure dataset used in this study is from three sources. All 
roads (primary/secondary and interstate highways), railways, 
train stations, airports/airfields, universities, schools, hospitals, 
nursing homes, fire departments, post offices, libraries, and police 
stations data are based on open access data from TIGER/Line 
Shapefiles available from the US census bureau. The dams are ex
tracted from the United States Army Corps of Engineers (USACE) 
National Inventory of dams, which contains an extensive dataset 
of 92,092 dams across the United States. The levees dataset is 
from the USACE national levee database, which contains a total 
of 6,972 levee systems (length: 39,445 km) across the United 
States. However, we note that the USACE national levee database 
only includes a small percentage (∼20%) of existing levee systems 
in the United States (48). The roads, railways, and levees datasets 
are linear/line features. The datasets of the dams, train stations, 
airports/airfields, schools, fire departments, post offices, libraries, 
and police stations are point features. While the universities, hos
pitals, and nursing homes are area/polygon features. Figure 1 pro
vides summary statistics of all infrastructure data used in this 
study.

Subsidence exposure analysis
Exposure indicates the degree to which the elements-at-risk 
(population, properties, and infrastructure) are exposed to a par
ticular hazard (79). In this study, we define exposure to land sub
sidence based on the magnitude of negative land level change 
(VLM < 0 mm per year) for the different elements-at-risk. We pre
sent the subsidence exposure for several subsidence rates in order 
of increasing hazard severity: VLM < 0 mm per year, VLM < −1 mm 
per year, VLM < −2 mm per year, VLM < −3 mm per year, 
VLM < −4 mm per year), and VLM < −5 mm per year.

To determine the area exposure to subsidence, we estimated 
the areas affected by subsidence hazard for 172 counties with 
InSAR pixels along the US east coast. To more precisely define 
the exposure limits in each county/infrastructure, we incorpo
rated the standard deviation values associated with the VLM 
data (i.e. ±standard deviation). This approach yields estimates 
of the lower (VLM + standard deviation), median (VLM), and upper 
(VLM—standard deviation) bounds of the exposure analysis, 
which is critical for accurately assessing the impact across vary
ing degrees of subsidence severity. We evaluated the exposure 
to subsidence for each county by implementing a regular grid of 
100 m for each county and assigned the VLM rate for each grid 
cell as the median VLM value of InSAR pixels within that grid 
cell. Assuming spatially continuous subsidence and applying 
a linear interpolation, we then calculate the area exposed to sub
sidence for different subsidence hazard severity (i.e. VLM < 0 mm 
per year, VLM < −1 mm per year, VLM < −2 mm per year, 
VLM < −3 mm per year, VLM < −4 mm per year, and VLM < −5 mm 
per year) expressed as a percentage of the total area of the 
county (equation 8). Counties not exposed to subsidence for 
the different subsidence rate thresholds (i.e. VLM ≥ 0 mm per 

Ohenhen et al. | 11
D

ow
nloaded from

 https://academ
ic.oup.com

/pnasnexus/article/3/1/pgad426/7504900 by guest on 31 January 2024

http://academic.oup.com/pnasnexus/article-lookup/doi/10.1093/pnasnexus/pgad426#supplementary-data
http://academic.oup.com/pnasnexus/article-lookup/doi/10.1093/pnasnexus/pgad426#supplementary-data
http://academic.oup.com/pnasnexus/article-lookup/doi/10.1093/pnasnexus/pgad426#supplementary-data
http://academic.oup.com/pnasnexus/article-lookup/doi/10.1093/pnasnexus/pgad426#supplementary-data
http://academic.oup.com/pnasnexus/article-lookup/doi/10.1093/pnasnexus/pgad426#supplementary-data


year, VLM ≥ −1 mm per year, VLM ≥ −2 mm per year, VLM ≥  
−3 mm per year, VLM ≥ −4 mm per year, and VLM ≥ −5 mm per 
year) or without any InSAR pixels are given an absolute value 
of 0.

%Area exposed to subsidence

=
County area exposed to subsidence

Total county area
× 100%. (10) 

Subsidence exposure for the infrastructure is independent of the 
infrastructure type, age, quality, tolerance, and other factors 
which may increase the risk. Exposure to subsidence for infra
structure is calculated based on the feature type (linear, point, 
or area). For the linear features (roads, railways, and levees), 
we generated a regular grid of VLM rates across the US east coast 
and extracted the VLM rate (and VLM ± standard deviation) of 
each point on the linear infrastructure. For the point features 
(train stations, airports/airfields, schools, fire departments, 
post offices, libraries, and police stations), we selected InSAR 
pixels within a radius of 500 m and calculated the average 
weighted VLM rate for each point infrastructure. Similarly, for 
the polygon features (universities, hospitals, and nursing 
homes), the VLM rate for each polygon infrastructure is the aver
age weighted VLM rate of InSAR pixels within each polygon 
feature.

Differential subsidence hazard analysis
The differential subsidence analysis for the linear (railways, 
roads, and levees) and area (universities, hospitals, and nursing 
homes) infrastructure was determined similarly to the exposure 
analysis described above. For the linear feature, we generated a 
regular grid of β values across the US east coast and extracted 
the β of each point on the linear feature. For each levee, we only 
report the maximum β category (low, medium, high, and very 
high). For the area infrastructure (universities, hospitals, and 
nursing homes), the β value for each area infrastructure is the 
maximum β of InSAR pixels within each polygon. For the point in
frastructure, we extracted the β value in the grid corresponding to 
the location of the point feature.
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